On a generalization from ruin to default in a Lévy insurance risk model
نویسندگان
چکیده
In a variety of insurance risk models, ruin-related quantities in the class of expected discounted penalty function (EDPF) were known to satisfy defective renewal equations that lead to explicit solutions. Recent development in the ruin literature has shown that similar defective renewal equations exist for a more general class of quantities than that of EDPF. This paper further extends the analysis of this new class of functions in the context of a spectrally negative Lévy risk model. In particular, we present an operator-based approach as an alternative analytical tool in comparison with fluctuation theoretic methods used for similar quantities in the current literature. The paper also identifies a sufficient and necessary condition under which the classical results from defective renewal equation and those from fluctuation theory are interchangeable. As a by-product, we present a series representation of scale function as well as potential measure in terms of compound geometric distribution.
منابع مشابه
On The Moments Of The Time To Ruin Distribution When The Initial Reserve Is Large And Claim Amount Distribution Is Two Stage Hypo Exponential Distribution
In any classical risk model one of the important random variable is time to ruin. As time to ruin warns the management for possible adverse situations that may arise, the distribution of time to ruin place a vital role in the day to day transactions of the any insurance company. Moments of the distribution are also important as coefficient of skewness of the distribution is very important in ac...
متن کاملSample path behavior of a Lévy insurance risk process approaching ruin, under the Cramér-Lundberg and convolution equivalent conditions
Recent studies have demonstrated an interesting connection between the asymptotic behavior at ruin of a Lévy insurance risk process under the Cramér-Lundberg and convolution equivalent conditions. For example the limiting distributions of the overshoot and the undershoot are strikingly similar in these two settings. This is somewhat surprising since the global sample path behavior of the proces...
متن کاملDistribution of the Present Value of Dividend Payments in a Lévy Risk Model
In this short paper, we show how fluctuation identities for Lévy processes with no positive jumps yield the distribution of the present value of dividends paid until ruin in a Lévy insurance risk model with a dividend barrier.
متن کاملApplied Probability Trust (22 February 2007) DISTRIBUTION OF THE PRESENT VALUE OF DIVIDEND PAY- MENTS IN A LÉVY RISK MODEL
In this short paper, we show how uctuation identities for Lévy processes with no positive jumps yield the distribution of the present value of dividend payments until ruin in a Lévy insurance risk model with a dividend barrier.
متن کاملRuin Time and Severity for a Lévy Subordinator Claim Process: A Simple Approach
This paper is concerned with an insurance risk model whose claim process is described by a Lévy subordinator process. Lévy-type risk models have been the object of much research in recent years. Our purpose is to present, in the case of a subordinator, a simple and direct method for determining the finite time (and ultimate) ruin probabilities, the distribution of the ruin severity, the reserve...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012